Imitation Learning from Imperfect Demonstration

Yueh-Hua Wu^{1,2}, Nontawat Charoenphakdee^{3,2}, Han Bao^{3,2}, Voot Tangkaratt², Masashi Sugiyama^{2,3}

¹National Taiwan University

²RIKEN Center for Advanced Intelligence Project

³The University of Tokyo

Poster #47

Introduction

- Imitation learning
 - learning from demonstration instead of a reward function
- Demonstration
 - a set of **decision makings** (state-action pairs x)
- Collected demonstration may be imperfect
 - Driving: traffic violation
 - Playing basketball: technical foul

2/12

Motivation

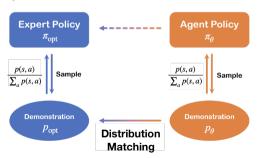
- Confidence: how optimal is state-action pair x (between 0 and 1)
- A semi-supervised setting: demonstration partially equipped with confidence
- How?
 - crowdsourcing: N(1)/(N(1) + N(0)).
 - digitized score: $0.0, 0.1, 0.2, \dots, 1.0$

Generative Adversarial Imitation Learning [1]

- One-to-one correspondence between policy π and distribution of demonstration [2]
- Utilize generative adversarial training

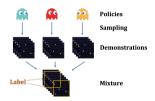
$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{\theta}}[\log D_w(x)] + \mathbb{E}_{x \sim p_{\text{opt}}}[\log(1 - D_w(x))]$$

 D_w : discriminator, p_{opt} : demonstration distribution of π_{opt} , and p_{θ} : trajectory distribution of agent π_{θ}



Problem Setting

Human switches to non-optimal policies when they make mistakes or are distracted



$$p(x) = \alpha \underbrace{p(x|y=+1)}_{p_{\text{opt}}(x)} + (1-\alpha) \underbrace{p(x|y=-1)}_{p_{\text{non}}(x)}$$

- Confidence: $r(x) \triangleq \Pr(y = +1|x)$
- Unlabeled demonstration: $\{x_i\}_{i=1}^{n_u} \sim p$
- \bullet Demonstration with confidence: $\{(\textit{x}_j,\textit{r}_j)\}_{j=1}^{n_{c}} \sim q$

Proposed Method 1: Two-Step Importance Weighting Imitation Learning

Step 1: estimate confidence by learning a confidence scoring function g

• Unbiased risk estimator (come to Poster #47 for details):

$$R_{\mathrm{SC},\ell}(g) = \underbrace{\mathbb{E}_{x,r \sim q}[r \cdot (\ell(g(x)))]}_{\text{Risk for optimal}} + \underbrace{\mathbb{E}_{x,r \sim q}[(1-r)\ell(-g(x))]}_{\text{Risk for non-optimal}}$$

Theorem

For $\delta \in (0,1)$, with probability at least $1-\delta$ over repeated sampling of data for training \hat{g} ,

$$R_{\mathrm{SC},\ell}(\hat{g}) - R_{\mathrm{SC},\ell}(g^*) = \mathcal{O}_p(\underbrace{n_c^{-1/2}}_{e \text{ of confidence}} + \underbrace{n_u^{-1/2}}_{e \text{ of unlabeled}})$$

Step 2: employ importance weighting to reweight GAIL objective

Importance weighting

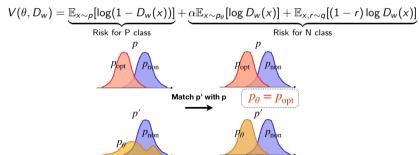
$$\min_{ heta} \max_{w} \mathbb{E}_{x \sim p_{ heta}}[\log D_w(x)] + \mathbb{E}_{x \sim p}[rac{\hat{r}(x)}{lpha} \log(1 - D_w(x))]$$

Proposed Method 2: GAIL with Imperfect Demonstration and Confidence

• Mix the agent demonstration with the non-optimal one

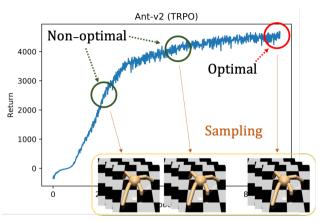
$$p' = \alpha p_{\theta} + (1 - \alpha) p_{\text{non}}$$

- Matching p' with p enables $p_{\theta} = p_{\text{opt}}$ and meanwhile benefits from the large amount of unlabeled data.
- Objective:



7/12

Setup



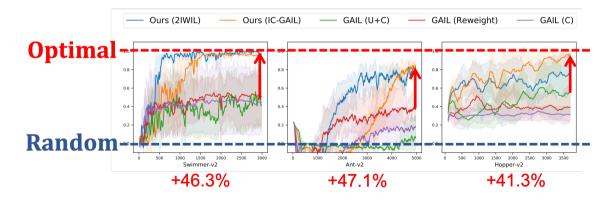
Demonstration Mixture

Confidence is given by a classifier trained with the demonstration mixture labeled as optimal

Results: Higher Average Return of the Proposed Methods

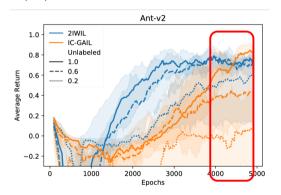
Environment: Mujoco

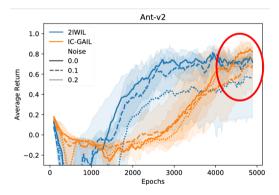
Proportion of labeled data: 20%



Results: Unlabeled Data Helps

- More unlabeled data results in lower variance and better performance
- proposed methods are robust to noise





(a) Number of unlabeled data. The number in the legend indicates **proportion** of orignal unlabeled data.

(b) Noise influence. The number in the legend indicates standard deviation of Gaussian noise.

Conclusion

- Two approaches that utilize both unlabeled and confidence data are proposed
- Our methods are robust to labelers with noise
- The proposed approaches can be generalized to other IL and IRL methods

Poster #47

Reference

- [1] Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in Neural Information Processing Systems. 2016.
- [2] Syed, Umar, Michael Bowling, and Robert E. Schapire. "Apprenticeship learning using linear programming." Proceedings of the 25th international conference on Machine learning. ACM, 2008.